APPLICATION OF THE PERFORMANCE STANDARD
FOR PROTECTIVE COATINGS
UNDER REQUIREMENTS CONCERNING THE CONSTRUCTION
OF SEA-GOING BULK CARRIERS
AND SEA-GOING DOUBLE HULL OIL TANKERS

2012
(Consolidated text incorporating
Amendments No. 1/2013,
status on 1 January 2014)

Publications P (Additional Rule Requirements) issued by Polski Rejestr Statków complete or extend the rules and are mandatory where applicable.
PRS Publication No. 87/P – Application of the Performance Standard for Protective Coatings under Requirements Concerning the Construction of Sea-going Bulk Carriers and Sea-going Double Hull Oil Tankers – 2012, is an extension of the requirements contained in Publication No. 84/P – Requirements Concerning the Construction and Strength of the Hull and Hull Equipment of Sea-going Bulk Carriers of 90 m in Length and Above and the Publication No. 85/P – Requirements Concerning the Construction and Strength of the Hull and Hull Equipment of Sea-going, Double Hull Oil Tankers of 150 m in Length and Above and in Part II “Hull” of the Rules for the Classification and Construction of Sea-Going Ships, as well as in all other PRS Rules, where reference to the Publication has been made.

This Publication was approved by PRS Executive Board on 14 March 2012 and enters into force on 20 March 2012.

The present Publication replaces Publication No. 87/P – Application of the Performance Standard for Protective Coatings (PSPC) under Requirements Concerning the Construction and Strength of the Hull and Hull Equipment of Sea-going Bulk Carriers of 90 m in Length and Above – 2010, including the issued Amendments thereto – No. 1/2010.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 General</td>
<td>5</td>
</tr>
<tr>
<td>1.1 Application</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Definitions</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Reference Documents</td>
<td>6</td>
</tr>
<tr>
<td>2 Protective Coatings for Cargo Oil Tanks of Crude Oil Tankers and Void Spaces on Bulk Carriers and Oil Tankers</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Application</td>
<td>7</td>
</tr>
<tr>
<td>2.2 General Principles</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Coating Technical File (CTF)</td>
<td>7</td>
</tr>
<tr>
<td>2.4 Coating Performance Standard</td>
<td>8</td>
</tr>
<tr>
<td>2.5 Basic Coating Requirements</td>
<td>10</td>
</tr>
<tr>
<td>2.6 Coating System Approval</td>
<td>13</td>
</tr>
<tr>
<td>2.7 Coating Inspection Requirements</td>
<td>13</td>
</tr>
<tr>
<td>2.8 Coating Verification Requirements</td>
<td>14</td>
</tr>
<tr>
<td>2.9 Alternative Coating Systems</td>
<td>14</td>
</tr>
<tr>
<td>3 Procedure for Coating System Approval</td>
<td>15</td>
</tr>
<tr>
<td>3.1 Method A: Laboratory Test</td>
<td>15</td>
</tr>
<tr>
<td>3.2 Method B: 5 Years Field Exposure</td>
<td>16</td>
</tr>
<tr>
<td>3.3 Method C: Existing Marintek B1 Approvals</td>
<td></td>
</tr>
<tr>
<td>3.4 Method D: Coating Manufacturer</td>
<td>17</td>
</tr>
<tr>
<td>4 Procedure for Assessment of Coating Inspectors’ Qualifications</td>
<td>19</td>
</tr>
<tr>
<td>5 Procedure for Inspection Agreement</td>
<td>20</td>
</tr>
<tr>
<td>6 Procedure for Verification of Application of the PSPC</td>
<td>20</td>
</tr>
<tr>
<td>7 Procedure for Coating Technical File Review</td>
<td>21</td>
</tr>
<tr>
<td>8 Procedure for Review of Quality Control of Automated Shop Primer Plants</td>
<td>21</td>
</tr>
<tr>
<td>9 Procedure for Review of Coating Technical Specifications</td>
<td>21</td>
</tr>
<tr>
<td>10 Cathodic Protection on Oil Tankers</td>
<td>22</td>
</tr>
<tr>
<td>Annex 1</td>
<td>25</td>
</tr>
<tr>
<td>Annex 2</td>
<td>32</td>
</tr>
<tr>
<td>Annex 3</td>
<td>34</td>
</tr>
</tbody>
</table>
1 GENERAL

1.1 Application

1.1.1 These Rules apply to ships classed with the Polski Rejestr Statków (called PRS hereafter).

1.1.2 These Rules shall be applied by PRS to:

- bulk carriers subject to the Publication No. 84/P – Requirements Concerning the Construction and Strength of the Hull and Hull Equipment of Sea-going Bulk Carriers of 90 m in Length and Above, contracted for construction on or after 1 July 2009;
- oil tankers subject to the Publication No. 85/P – Requirements Concerning the Construction and Strength of the Hull and Hull Equipment of Sea-going, Double Hull Oil Tankers of 150 m in Length and Above, contracted for construction on or after 1 September 2010;
- bulk carriers and oil tankers of 500 gross tonnage and upwards, contracted for construction on or after 1 July 2008;
- crude oil tankers of 5,000 gross tonnage and upwards, contracted for construction on or after 1 January 2013.

1.2 Definitions

Definitions concerning general terminology applied in PRS Rules are contained in the Rules. For the purpose of this Publication, the following additional definitions have been adopted:

1. Crude oil tanker – as defined in Annex I of MARPOL 73/78.
2. CTF – coating technical file. A term used for the collection of documents describing issues related to the coating system and its application from the point in time when the first document is provided and for the entire life of the ship including the inspection agreement.
3. Dew point – the temperature at which air is saturated with moisture.
4. DFT – dry film thickness.
5. Dust – loose particle matter present on a surface prepared for painting, arising from blast-cleaning or other surface preparation processes, or resulting from action of the environment.
7. GOOD condition – the condition with only minor spot rusting as defined in resolution A.1049(27) (2011 ESP Code), as amended. Condition with spot rusting on less than 3% of the area under consideration without visible failure of the coating. Rusting at edges or welds, must be on less than 20% of edges or weld lines in the area under consideration.
8. Hard coating – a coating that chemically converts during its curing process or non-convertible air drying coating which may be used for maintenance purposes. Hard coating can be either inorganic or organic.
9. NDFT – the nominal dry film thickness.
10. 90/10 practice – the practice means that 90% of all thickness measurements shall be greater than, or equal to, NDFT and none of the remaining 10% measurements shall be below 90% NDFT.
11. Primer coat – the first coat of the coating system applied in the shipyard after shop-primer application.
12. PSPC – performance standard for protective coatings according to the Resolution MSC.215(82).
13. PSPC–COT – performance standard for protective coatings according to the Resolution MSC.288(87).
14. Shop-primer – the prefabrication primer coating applied to steel plates, often in automatic plants (and before the first coat of a coating system).
15. Stripe coating – painting, by a brush or a roller, of edges, welds, hard to reach areas, etc., to ensure good paint adhesion and proper paint thickness in critical areas.
16. Target useful life – the target value, in years, of durability for which the coating system is designed.
17. Technical Data Sheet – paint manufacturer’s Product Data Sheet which contains the detailed technical instructions and information relevant to the coating and its application.
.18 Totally enclosed space – the space which has no means of access and no ventilation.

.19 Void space – an enclosed space below the bulkhead deck, within and forward of, the cargo area of oil tankers or the cargo length area of bulk carriers, excluding:
(a) a dedicated seawater ballast tank;
(b) a space for the carriage of cargo;
(c) a space for the storage of any substance (e.g., oil fuel, fresh water, provisions);
(d) a space for the installation of any machinery (e.g., cargo pump, ballast pump, bow thruster);
(e) any space in normal use by personnel; and
(f) a double-side skin space of bulk carriers of 150 m in length and upwards which shall comply with the Performance standard for dedicated seawater ballast tanks in all types of ships and double-side skin spaces of bulk carriers.

1.3 Reference Documents

Standards

(7) NACE SP0508-2010 Item no. 21134 Standard practice methods of validating equivalence to ISO 8502-9 on measurement of the levels of soluble salts.

Other Documents

(1) IMO Resolution MSC.288(87) Performance Standard for Cargo Oil Tanks of Crude Oil Tankers (PSPC-OT).

(II) IACS UI SC259 For Application of SOLAS Regulation II-1/3-11 Performance Standard for Protective Coatings for Cargo Oil Tanks of Crude Oil Tankers (PSPC-COT), adopted by Resolution MSC.288(87).

(III) IACS UI SC223 For Application of SOLAS Regulation II-1/3-2 Performance Standard for Protective Coatings (PSPC) for Dedicated Seawater Ballast Tanks in All Types of Ships and Double-side Skin Spaces of Bulk Carriers, adopted by Resolution MSC.215(82).
2 PROTECTIVE COATINGS FOR CARGO OIL TANKS OF CRUDE OIL TANKERS
AND VOID SPACES ON BULK CARRIERS AND OIL TANKERS

2.1 Application

2.1.1 Chapter 2 provides technical requirements for the minimum standard for protective coatings to be applied in cargo oil tanks during the construction of new crude oil tankers and for protective coatings for void spaces constructed of steel in bulk carriers and oil tankers.

2.1.2 The provisions of Chapter 2 apply to cargo oil tanks of crude oil tankers and void spaces on bulk carriers and oil tankers mentioned in paragraph 1.1.2.

2.1.3 Protective coatings in dedicated seawater ballast tanks and double-side skin spaces on ships, which are subject to PRS survey mentioned in paragraph 1.1.2 shall comply with the requirements specified in Publication No. 55/P – Survey of corrosion protection and anti-fouling systems.

2.2 General Principles

2.2.1 The ability of the coating system to reach its target useful life depends on the type of the coating system, steel preparation, operating environment, application and coating inspection and maintenance.

2.2.2 Inspections relevant to surface preparation and coating processes shall be agreed upon between the Shipowner, the shipyard and the coating manufacturer, presented to the PRS for review. Clear evidence of the above-mentioned inspections shall be reported and included in the Coating Technical File (CTF).

2.2.3 Specifications, procedures and the various different steps in the coating application process (including, but not limited to, surface preparation) shall be strictly applied by the shipbuilder in order to prevent premature decay and/or deterioration of the coating system.

2.2.4 The coating performance can be improved by adopting measures at the ship design stage such as reducing scallops, using rolled profiles, avoiding complex geometric configurations and ensuring that the structural configuration permits easy access for tools and to facilitate cleaning, drainage and drying of the space to be coated.

2.3 Coating Technical File (CTF)

2.3.1 Coating Technical File (CTF) shall contain specification of the coating system applied to cargo oil tanks of crude oil tankers and to void spaces in bulk carriers and oil tankers, record of the shipyard’s and Shipowner’s coating work, detailed criteria for coating selection, job specifications, inspection, maintenance and repair.

The Coating Technical File (CTF) shall be submitted to PRS for review.

2.3.2 The Coating Technical File (CTF) on new ship construction stage shall be delivered by the shipyard and shall contain at least the following:

1. a copy of Type Approval Certificate and Statement of Compliance of coating system;
2. a copy of Type Approval Certificate of corrosion resistant steel (if any);
3. Technical Data Sheets of coating system including:
 a) product name and identification mark and/or number;
 b) materials, components and composition of the coating system, colours;
 c) minimum and maximum dry film thickness;
 d) application methods, tools and/or machines;
 e) condition of surface to be coated (de-rusting grade, cleanness, profile, etc.);
 f) environmental limitations (temperature and humidity);
2.3.3 The Coating Technical File (CTF) shall contain records of in-service maintenance, carried out repairs and partial re-coating activities.

2.3.4 Full re-coating process shall be recorded in the Coating Technical File (CTF) within the scope specified in 2.3.2.

2.3.5 The Coating Technical File (CTF) shall be kept on board and maintained throughout the life of the ship.

2.4 Coating Performance Standard

2.4.1 The requirements set forth in the present Publication intend to provide a target useful coating life of 15 years, which is considered to be the time period, from initial application, over which the coating system will remain in “GOOD” condition. The actual useful life will vary, depending on numerous variables including actual conditions encountered in service.

2.4.2 The following areas of cargo oil tanks of new crude oil tankers are the minimum areas that shall be protected according to requirements specified in Chapter 2 of the present Publication:

1. Deckhead with complete internal structure, including brackets connecting to longitudinal and transverse bulkheads. In tanks with ring frame girder construction, the underdeck transverse framing to be coated down to level of the first tripping bracket below the upper faceplate.

2. Longitudinal and transverse bulkheads to be coated to the uppermost means of access level. The uppermost means of access and its supporting brackets to be fully coated.

3. On cargo tank bulkheads without an uppermost means of access the coating to extend to 10% of the tanks height at centreline but need not extend more than 3 m down from the deck.

4. Flat inner bottom and all structure to the height of 0.3 m above inner bottom to be coated.
2.4.3 Protective coatings for the following void spaces shall comply with the requirements specified in Chapter 2 of the present *Publication*:

1. in bulk carriers:
 (a) double bottom pipe passages / pipe tunnels;
 (b) small void spaces located behind gusset or shedder plates at the bottom of corrugation bulkheads with the exception of totally enclosed spaces;
 (c) other small void spaces in cargo spaces, with the exception of totally enclosed spaces;
 (d) lower transverse stool of transverse bulkheads, with the exception of totally enclosed spaces; and
 (e) upper transverse stool of transverse bulkheads, with the exception of totally enclosed spaces;

2. in oil tankers:
 (a) forward cofferdam/cofferdam separating cargo from forepeak;
 (b) cofferdam in cargo area/cofferdam separating incompatible cargoes;
 (c) aft cofferdam;
 (d) duct keel/pipe tunnels;
 (e) lower bulkhead stools; and
 (f) upper bulkhead stools.

2.4.4 Protective coatings for the following void spaces shall comply with the requirements specified in Chapter 2 of the *Publication No. 55/P*:

1. in bulk carriers:
 (a) double-side skin spaces in ships of less than 150 m in length; and
 (b) upper and lower side void spaces and double bottoms void spaces in cargo area;

2. in oil tankers:
 (a) double-side skin (DSS) voids including sides, bottoms/double hull voids spaces protecting cargo oil tanks.

2.4.5 No requirements are contained in this *Publication* for protective coatings for the following void spaces in bulk carriers and oil tankers:

1. totally enclosed spaces located behind gusset or shedder plates at the bottom of corrugation bulkheads and other small totally enclosed spaces in cargo tanks;

2. lower transverse stool of transverse bulkheads that are totally enclosed spaces;

3. upper transverse stool of transverse bulkheads that are totally enclosed spaces;

4. transducer voids; and
any spaces not specifically mentioned in paragraphs 2.4.3 and 2.4.4.

2.4.6 The requirements of the present Publication cover protective coatings for the ship’s steel structure. Access arrangements that are integral to the ship’s structure, such as increased stiffener depths for walkways, stringers, etc., are to fully comply with this Publication when located within the coated areas.

2.4.7 It is recommended that the requirements of Chapter 2 should be applied, to the extent possible, to those portions of permanent means of access provided for inspection, not integral to the ship’s structure, such as rails, independent platforms, ladders, etc. Other equivalent methods of providing corrosion protection for the non-integral items may also be used, provided they do not impair the performance of the coatings of the surrounding structure.

2.4.8 It is also recommended that supports for piping, measuring devices, etc., be coated in accordance with the provisions for non-integral items indicated in paragraph 2.4.7.

2.5 Basic Coating Requirements

2.5.1 The requirements for protective coating systems to be applied at ship construction for the cargo oil tanks of crude oil tankers and void spaces in bulk carriers and oil tankers meeting the criteria specified in paragraph 2.4.1, are listed in table 1.

2.5.2 Coating manufacturers shall provide a specification of the protective coating system to satisfy the requirements of table 1 and the operating environment.

2.5.3 The Technical Data Sheet, as well as Type Approval Certificate and Statement of Compliance for the protective coating system shall be submitted to PRS for verification.

2.5.4 The shipyard shall apply the protective coating in accordance with the verified Technical Data Sheet and its own verified application procedures.

Table 1

Basic coating system requirements for cargo oil tanks of crude oil tankers and void spaces in bulk carriers and oil tankers

<table>
<thead>
<tr>
<th>Characteristic/Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Design of coating system</td>
<td>The coating system shall be selected having regard to the service conditions and planned maintenance. The following aspects, among other things shall be considered:</td>
</tr>
<tr>
<td>.1 Selection of the coating system</td>
<td>.1 location of space relative to heated surfaces,</td>
</tr>
<tr>
<td></td>
<td>.2 frequency of cargo operations,</td>
</tr>
<tr>
<td></td>
<td>.3 required surface conditions,</td>
</tr>
<tr>
<td></td>
<td>.4 required surface cleanliness and dryness,</td>
</tr>
<tr>
<td></td>
<td>.5 supplementary cathodic protection, if any, (where coating is supplemented by cathodic protection, the coating shall be compatible with the cathodic protection system),</td>
</tr>
<tr>
<td></td>
<td>.6 relative humidity,</td>
</tr>
<tr>
<td></td>
<td>.7 mechanical ventilation,</td>
</tr>
<tr>
<td></td>
<td>.8 access and maintenance,</td>
</tr>
<tr>
<td></td>
<td>.9 permeability of the coating and resistance to inert gas and acids (if any), and</td>
</tr>
<tr>
<td></td>
<td>.10 appropriate mechanical properties (flexibility, impact resistance).</td>
</tr>
<tr>
<td>Coating manufacturers shall supply products with documented satisfactory performance records and technical data sheets. The manufacturers shall also be capable of rendering adequate technical assistance. Performance records, technical data sheet and any manufacturer's technical assistance provided shall be recorded in the Coating Technical File (CTF).</td>
<td></td>
</tr>
<tr>
<td>Coatings for application underneath sun-heated decks or on bulkheads forming boundaries of heated spaces shall be able to withstand repeated heating and/or cooling without becoming brittle.</td>
<td></td>
</tr>
</tbody>
</table>

1 Reference is made to the non-mandatory MSC/Circ.1279 „Guidelines for corrosion protection means of access arrangement”, adopted by MSC 84 in May 2008.
Characteristic/Reference Requirement

<table>
<thead>
<tr>
<th>Characteristic/Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2 Coating type</td>
<td>Epoxy-based system. A multi-coat system with each coat of contrasting colour is recommended. The top coat shall be of a light colour in order to facilitate in-service inspection. The use of other coating systems is subject to special consideration of PRS. Consideration should be given to the use of enhanced coatings in way of suction bellmouths and heating coil downcomers. Consideration should be given to the use of supplementary cathodic protection where there may be galvanic issues.</td>
</tr>
<tr>
<td>.3 Coating prequalification test</td>
<td>Epoxy-based systems shall be subjected to laboratory tests according to test programme agreed with PRS or have documented field exposure for 5 years with a final coating condition of not less than “GOOD”. Other coating systems shall be subjected to laboratory tests according to test programme agreed with PRS.</td>
</tr>
</tbody>
</table>
| .4 Job specification | **For cargo oil tanks of crude oil tankers:** There shall be a minimum of two stripe coats and two spray coats, except that the second stripe coat, by way of welded seams only, may be reduced in scope where it is proven that the NDFT can be met by the coats applied, in order to avoid unnecessary over-thickness. Any reduction in scope of the second stripe coat shall be fully detailed in the Coating Technical File (CTF). Stripe coats shall be applied as a coherent film showing good film formation and no visible defects, using a brush or a roller. The roller should be used for scallops, ratholes, etc., but not for edges and welds. Each main coating layer shall be appropriately cured before application of the next coat, in accordance with the coating manufacturer’s recommendations.
For void spaces in bulk carriers and oil tankers: There should be a minimum of one stripe coat and one spray coat. The stripe coat should be applied on thermally cut free edges and small holes only. Surface contaminants such as rust, grease, dust, salt, oil, etc., shall be removed prior to painting by proper method according to the paint manufacturer’s recommendations. Abrasive inclusions embedded in the coating shall be removed. Job specifications shall include the dry-to-recoat times and walk-on time specified by the manufacturer. |
| .5 NDFT (nominal total dry film thickness) | NDFT 320 µm for cargo oil tanks of crude oil tankers and NDFT 200 µm for void spaces in bulk carriers and oil tankers with 90/10 practice for epoxy-based coatings; other systems in accordance with the coating manufacturer’s specifications. The maximum total dry film thickness according to the manufacturer’s detailed specifications. Care shall be taken to avoid increasing the DFT in an exaggerated way. Wet film thickness shall be regularly checked during application. Thinners shall be limited to those types and quantities recommended by the paint manufacturer. Wet film thickness shall be regularly checked during application for quality control by the Builder. PSPC-COT does not state who should check WFT, it is accepted for this to be the Builder Measurement of DFT shall be done as part of the inspection required in PSPC-COT. |

2 PSP (primary surface preparation)

| .1 Blasting and profile (1)(5)(6) | Sa 2½; with profiles between 30-75 µm
Blasting shall not be carried out when:
.1 the relative humidity is above 85%, or
.2 the surface temperature of steel is less than 3 °C above the dew point. The checking of the steel surface cleanliness and roughness profile shall be carried out at the end of the surface preparation and before the application of the primer, in accordance with the manufacturer’s recommendations. |
| .2 Water soluble salts | ≤ 50 mg/m² of sodium chloride. |

1 PRS basically assumes for such a coating prequalification test that the measured average dry film thickness (DFT) on each prepared test panel shall not exceed a nominal DFT (NDFT) of 320 µm plus 20% unless a paint manufacturer specifies a NDFT greater than 320 µm. In the latter case (NDFT > 320 µm), the average DFT shall not exceed the specified NDFT plus 20% and the coating system shall be certified to the specified NDFT if the system passes the tests according to Annex 1 of MSC 288(87). The measured DFT shall meet the “90/10” rule and the maximum DFT shall be always below the maximum DFT value specified by the manufacturer.
<table>
<thead>
<tr>
<th>Characteristic/Reference</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit equivalent to NaCl (4)(7)</td>
<td>Minimum readings to be taken are one (1) per plate in the case of manually applied shop primer. In cases of shop primer application in automatic plants the assessment of surface cleanliness should be taken according to documented procedure for recording/measuring soluble salts.</td>
</tr>
<tr>
<td>.3 Shop-primer</td>
<td>Zinc containing inhibitor free zinc silicate based or equivalent. Compatibility with main coating system shall be confirmed by the coating manufacturer.</td>
</tr>
</tbody>
</table>

3 Secondary surface preparation

|.1 Steel condition (2) | The steel surface shall be prepared so that the coating selected can achieve an even distribution at the required NDFT and have an adequate adhesion by removing sharp edges, grinding weld beads and removing weld spatter and any other surface contaminant to grade:
P1 *for void spaces in bulk carriers and oil tankers*
P2 *for cargo oil tanks of crude oil tankers*.
For void spaces in bulk carriers and oil tankers:
Edges to be smooth, subject to one pass grinding or at least equivalent process before painting.
For cargo oil tanks of crude oil tankers:
Edges shall be treated to a rounded radius of minimum 2 mm, or subjected to three pass grinding or at least equivalent process before painting. |
|.2 Surface treatment (1) | *For cargo oil tanks of crude oil tankers*:
Sa 2/2; on damaged shop-primer and welds.
All surfaces to be coated shall be blasted to Sa 2, removing at least 70% of intact shop-primer, which has not passed a prequalification test procedure in accordance with item 1.3, table 1.
For void spaces in bulk carriers and oil tankers:
Sa 2 or St 3 on damaged shop-primer and welds.
All surfaces to be coated shall be blasted to Sa 2, removing at least 70% of intact shop-primer, which has not passed a prequalification test procedure in accordance with item 1.3, table 1.
If the complete coating system comprising epoxy-based main coating and shop-primer has passed the pre-qualification test procedure in accordance with item 1.3, table 1, intact shop-primer may be retained, provided the same epoxy coating system is used. The retained shop-primer shall be cleaned by sweep blasting, high-pressure water washing or an equivalent method.
If a zinc silicate shop-primer has passed the pre-qualification test procedure in accordance with item 1.3, table 1 as part of an epoxy coating system, it may be used in combination with other epoxy coatings approved in accordance with 1.3, table 1, provided that the compatibility has been confirmed by the manufacturer by test according to test programme agreed with PRS. |
|.3 Surface treatment after erection (1) | *For cargo oil tanks of crude oil tankers*:
Erection joints St 3 or better or Sa 2/2, where practicable.
.1 *For inner bottom*:
- Damages up to 20% of the area to be coated to be treated to minimum St 3.
- Contiguous damages over 25 m² or over 20% of the area to be coated, Sa 2/2 shall be applied.
.2 *For underdeck*:
- Damages up to 3% of the area to be coated to be treated to minimum St 3.
- Contiguous damages over 25 m² or over 3% of the area to be coated, Sa 2/2 shall be applied.
For void spaces in bulk carriers and oil tankers:
St 3 or better or Sa 2, where practicable on butts and damages.
Coating in overlap shall be feathered. |
|.4 Profile requirements (2)(6) | In the case of full or partial blasting: 30-75 μm, otherwise as recommended by the coating manufacturer. |
|.5 Dust (3) | Dust quantity rating 1 for dust size class 3, 4 or 5. Lower dust size classes should be removed if visible on the surface to be coated without magnification. |
2.6 Coating System Approval

The results from pre-qualification tests of the coating system (see table 1, item 1.3) shall be documented. If found satisfactory, *Type Approval Certificate* will be issued by PRS.

2.7 Coating Inspection Requirements

2.7.1 Inspection of protective coatings shall be carried out by qualified coating inspector certified to NACE Coating Inspector Level 2\(^1\) or FROSIO Inspector Level III\(^2\) or having equivalent qualifications issued according to guidelines specified in Annex 1 to *Publication No. 51/P*.

2.7.2 Coating inspector shall inspect surface preparation and coating application during the coating process by carrying out, as a minimum, the inspection items specified in table 2. Emphasis shall be placed on initiation of each stage of surface preparation and coatings application as improper work is extremely difficult to correct later in the coating process. Representative structural members shall be non-destructively examined for coating thickness. The coating inspector shall verify that appropriate collective measurements have been carried out.

2.7.3 The results from the inspection shall be recorded by the inspector in the daily log or non-conformity report and shall be included in the Coating Technical File (CTF).

\(^1\) NACE – The National Association of Corrosion Engineers.

Table 2
Inspection items

<table>
<thead>
<tr>
<th>Construction stage</th>
<th>Inspection items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary surface preparation</td>
<td>1 The surface temperature of steel, the relative humidity and the dew point shall be measured and recorded before the start of the blasting process and at times of sudden changes in weather.</td>
</tr>
<tr>
<td></td>
<td>2 The surface of steel plates shall be tested for soluble salt and checked for oil, grease and other contamination.</td>
</tr>
<tr>
<td></td>
<td>3 The cleanliness of the steel surface shall be monitored in the shop-primer application process.</td>
</tr>
<tr>
<td></td>
<td>4 The shop-primer material shall be confirmed to meet the requirements of item 2.3, table 1.</td>
</tr>
<tr>
<td>Thickness</td>
<td>If compatibility with the main coating system has been declared, then the thickness and curing of the zinc silicate shop-primer shall be confirmed to conform to the specified values.</td>
</tr>
<tr>
<td>Block assembly</td>
<td>1 After completing construction of the block and before secondary surface preparation starts, a visual inspection of steel surface treatment, including edge treatment shall be carried out. Any oil, grease or other visible contamination shall be removed.</td>
</tr>
<tr>
<td></td>
<td>2 After blasting/grinding/cleaning and prior to coating, a visual inspection of the prepared surface shall be carried out. On completion of blasting and cleaning and prior to the application of the first coat of the system, the steel surface shall be tested for levels of remaining soluble salts in at least one location per block.</td>
</tr>
<tr>
<td></td>
<td>3 The surface temperature, the relative humidity and the dew point shall be monitored and recorded during the coating application and curing.</td>
</tr>
<tr>
<td></td>
<td>4 Inspection shall be performed of the steps in the coating application process, mentioned in table 1.</td>
</tr>
<tr>
<td></td>
<td>5 DFT measurements shall be taken to prove that the coatings have been applied to the thickness as specified and outlined in annex 4.</td>
</tr>
<tr>
<td>Erection</td>
<td>1 Visual inspection of steel surface condition, surface preparation and verification of conformance to other requirements in table 1 and the agreed specification shall be performed.</td>
</tr>
<tr>
<td></td>
<td>2 The surface temperature, the relative humidity and the dew point shall be measured and recorded before coating starts and regularly during the coating process.</td>
</tr>
<tr>
<td></td>
<td>3 Inspection shall be performed of the steps in the coating application process, mentioned in table 1.</td>
</tr>
</tbody>
</table>

2.8 Coating Verification Requirements

The following shall be carried out by the PRS prior to reviewing the Coating Technical File for the ship subject to this Standard:

1. check that the Technical Data Sheet and Statement of Compliance or Type Approval Certificate comply with the Publication;
2. check that the coating identification on representative containers is consistent with the coating identified in the Technical Data Sheet and Statement of Compliance or Type Approval Certificate;
3. check that the inspector is qualified in accordance with the qualification standards in paragraph 2.7.1;
4. check that the inspector's reports of surface preparation and the coating's application indicate compliance with the manufacturer's Technical Data Sheet and Statement of Compliance or Type Approval Certificate; and
5. monitor implementation of the coating inspection requirements.

2.9 Alternative Coating Systems

2.9.1 All coating systems that are not epoxy-based systems applied according to table 1 are defined as alternative systems.

2.9.2 Shop primers not containing zinc or not silicate based are considered to be alternative systems and therefore equivalency is to be established by tests according to test programme agreed with PRS.
2.9.3 Acceptance of alternative systems will be subject to documented evidence that they ensure corrosion prevention performance at least equivalent to that required in the present Publication.

2.9.4 As a minimum, the documented evidence shall consist of satisfactory performance corresponding to that of a coating system which conforms to the coating standard specified in Chapter 2 – a target useful life of 15 years in either actual field exposure for 5 years with final coating condition not less than "GOOD" or laboratory testing.

For field exposure, the ship should be trading in varied trade routes and carrying substantial varieties of crude oils to ensure a realistic sample: for example, three ships on three different trade areas with different varieties of crude cargoes.

3 PROCEDURE FOR COATING SYSTEM APPROVAL (PSPC AND PSPC-COT)

Type Approval Certificate showing compliance with the PSPC section 5 shall be issued if the results of either method A+D, or B+D, or C+D are found satisfactory by PRS.

Type Approval Certificate showing compliance with PSPC-COT section 5 shall be issued if the results of either method A + D, B + D are found satisfactory by PRS.

The Type Approval Certificate shall indicate the product and the shop primer tested. The certificate shall also indicate other type approved shop primers with which the product may be used which have undergone the crossover test in a laboratory meeting the requirements in paragraph 3.1.1.

The documents required to be submitted are identified in the following paragraphs, in addition for all type approvals the Technical Data Sheet showing all the information in accordance with PSPC (PSPC-COT) 3.4.2.2 is required.

Winter type epoxy requires separate prequalification test including shop primer compatibility test according to PSPC (PSPC-COT) Annex 1. Winter and summer type coating are considered different unless infrared (IR) identification and specific gravity (SG) demonstrates that they are the same.

3.1 Method A: Laboratory Test

3.1.1 Coating pre-qualification test shall be carried out by the test laboratory which is recognized by the PRS and the test laboratory shall meet the requirements specified in Publication No. 56/P – Procedural Requirements for Laboratories.

3.1.2 Results from satisfactory pre-qualification tests PSPC Table 1; 1.3 of the coating system shall be documented according to the guidelines specified in Annex 1 and Annex 2 to this Publication and submitted to PRS. Results from satisfactory tests PSPC-COT Table 1; 1.3 of the coating system shall be documented and submitted to PRS.

3.1.3 Type Approval tests shall be carried out for the epoxy-based system with the stated shop primer in accordance with the PSPC (PSPC-COT) Annex 1. If the tests are satisfactory, a Type Approval Certificate will be issued to include both the epoxy and the shop primer. The Type Approval Certificate will allow the use of the epoxy either with the named shop primer or on bare prepared steel.

3.1.4 An epoxy-based system may be used with shop primers other than the one with which it was originally tested, provided that the other shop primers are approved as part of a system, PSPC (PSPC-COT) Table 1; 2.3 and Table 1; 3.2, and have been tested to Annex 1, which is known as the “Crossover Test”.

If the test or tests are satisfactory, a Type Approval Certificate will be issued. In this instance, the Type Approval Certificate will include the details of the epoxy and a list of all shop primers with which it has been tested that have passed these requirements.

The Type Approval Certificate will allow the use of the epoxy with all the named shop primers or on bare prepared steel.

3.1.5 Alternatively the epoxy can be tested without shop primer on bare prepared steel to the requirements of the PSPC (PSPC-COT) Annex 1.
If the test or tests are satisfactory, a Type Approval Certificate will be issued. The Type Approval Certificate will just record the epoxy.

The certificate will allow the use of the epoxy on bare prepared steel only. If in addition, crossover tests are satisfactorily carried out with shop primers which are approved as part of a system, the Type Approval Certificate will include the details of shop primers which have satisfactorily passed the crossover test. In this instance the Type Approval Certificate will allow the use of the epoxy-based system with all the named shop primers or on bare prepared steel.

3.1.6 Type approval of a coating system is normally to be carried out in accordance with the PSPC (PSPC-COT) Annex 1. PRS may, however, accept an equivalent laboratory test method comprised of a single test or number of tests combined as a test procedure, subject to the following acceptance requirements:

.1 The test method/programme shall be based on recognized national or international standards, well established with proven experience.
.2 The equivalent test program shall adequately address the technical intent of the tests required in PSPC (PSPC-COT) Annex 1.
.3 Test results of samples tested in accordance with the equivalent test methods shall, wherever possible, be compared against the acceptance criteria of PSPC (PSPC-COT) Annex 1. Where this is not possible due to the parameters of the equivalent test method used, the acceptance criteria of the equivalent test method standard shall be so selected as to provide the closest equivalent to those in PSPC (PSPC-COT) Annex 1.
.4 Test laboratories shall be recognized by PRS and meet the requirements specified in Publication No. 56/P – Procedural Requirements for Laboratories.
.5 Epoxy-based coating systems approved by such an equivalent test method shall be applied in the shipyard in accordance with all the surface preparation and application requirements of the PSPC.

3.1.7 The Type Approval Certificate is invalid if the formulation of either the epoxy or the shop primer is changed. It is the responsibility of the manufacturer to inform class immediately of any changes to the formulation.

3.1.8 Approvals granted according to previous versions of PRS Publication No. 87/P, before the date of implementation of the latest revision, remain valid as stated in the respective certificate. Renewal of certificates must be done in compliance with the latest version of PRS Publication No. 87/P.

3.2 Method B: 5 Years Field Exposure

3.2.1 Coating manufacturer’s records, which shall at least include the information indicated in 3.2.2, shall be examined to confirm coating system has 5 years field exposure, and the current product is the same as that being assessed.

3.2.2 Manufacturer’s records:
- original application records,
- original coating specification,
- original technical data sheet,
- current formulation’s unique identification (code or number),
- if the mixing ratio of base and curing agent has changed, a statement from the manufacturer confirming that the composition mixed product is the same as the original composition; this shall be accompanied by an explanation of the modifications made,
- current technical data sheet for the current production site,
- Specific Gravity (SG) and Infra Red (IR) identification of original product,
- SG and IR identification of the current product,
- if original SG and IR cannot be provided then a statement from the manufacturer confirming the readings for the current product are the same as those of the original.
3.2.3 Either class survey records from PRS or a joint (coating manufacturer/PRS) survey of all ballast (cargo) tanks of a selected vessel is to be carried out for the purpose of verification of compliance with the requirements of paragraphs 3.2.1, 3.2.2 and 3.2.7.

The reporting of the coating condition of ballast tanks in both cases shall be in accordance with Publication No. 39/P – Hull Surveys of Bulk Carriers and Publication No. 58/P – Hull Surveys of Double Hull Oil Tankers. The reporting of the coating of the cargo tanks shall be in accordance with the principles given in section 4 of MSC.1/Circ.1399.

3.2.4 The selected vessel

.1 The selected vessel is to have ballast tanks in regular use, of which:
 – at least one tank is approximately 2000 m³ or more in capacity,
 – at least one tank shall be adjacent to a heated tank, and
 – at least one tank contains an underdeck exposed to the sun.

.2 The selected vessel is to have cargo tanks in regular use, of which:
 – at least one tank is exposed to minimum temperature of 60 degree C plus or minus 3 degree,
 – for field exposure the ship should be trading in varied trade routes and carrying substantial varieties of crude oils including highest temperature and lowest pH limits to ensure a realistic sample: for example, three ships on three different trade areas with different varieties of crude cargoes.

3.2.5 In the case that the selected vessel does not meet the requirements specified in 3.2.4, the limitations shall be clearly stated on the type approval certificate. For example: ballast tanks – the coating cannot be used in tanks adjacent to heated tanks or underdeck or tanks with volume greater than the size surveyed, cargo tanks – the limitations on lowest pH and highest temperature of crude oils carried shall be clearly stated on the type approval certificate.

3.2.6 In all cases of approval by Method B, the shop primer shall be removed prior to application of the approved epoxy-based system coating, unless it can be confirmed that the shop primer applied during construction, is identical in formulation to that applied in the selected vessel used as a basis of the approval.

3.2.7 All ballast tanks shall be in GOOD condition excluding mechanical damages, without touch up or repair in the prior 5 years.

GOOD is defined as: condition with spot rusting on less than 3% of the area under consideration without visible failure of the coating. Rusting at edges or welds, must be on less than 20% of edges or welds in the area under consideration.

3.2.8 If the applied NDFT is greater than required by the PSPC, the applied NDFT will be the minimum to be applied during construction.

This will be reported prominently on the Type Approval Certificate.

3.2.9 If the results of the inspection are satisfactory, a Type Approval Certificate shall be issued to include both the epoxy-based system and the shop primer.

The Type Approval Certificate shall allow the use of the epoxy-based system either with the named shop primer or on bare prepared steel.

The Type Approval Certificate shall reference the inspection report which will also form part of the Coating Technical File.

3.2.10 The Type Approval Certificate is invalid if the formulation of either the epoxy-based system or the shop primer is changed. It is the responsibility of the manufacturer to inform class immediately of any changes to the formulation.

3.3 Method D: Coating Manufacturer
3.3.1 The coating/shop primer manufacturer shall meet the requirements specified in chapters 3, 4, 5, and 6 of *Publication No. 56/P – Procedural Requirements for Laboratories* and paragraphs 3.4.2 to 3.4.7 below, which shall be verified by PRS.

3.3.2 Coating Manufacturers:

.1 Extent of Engagement – Production of coating systems in accordance with PSPC (PSPC-COT) and this *Publication*.

.2 These requirements apply to both the main coating manufacturer and the shop primer manufacturer where both coatings form part of the total system.

.3 The coating manufacturer should provide PRS with the following information:
 - a detailed list of the production facilities,
 - clearly stated names and location of raw material suppliers,
 - a detailed list of the test standards and equipment to be used (scope of approval),
 - details of quality control procedures employed,
 - details of any sub-contracting agreements,
 - list of quality manuals, test procedures and instructions, records, etc.
 - copy of any relevant certificates with their issue number and/or date e.g. Quality Management System certification.

.4 Inspection and audit of the manufacturer’s facilities will be based on the requirements of the PSPC (PSPC-COT).

.5 With the exception of early ‘scale up’ from laboratory to full production, adjustment outside the limitations listed in the QC instruction referred to below is not acceptable, unless justified by trials during the coating system’s development programme, or subsequent testing. Any such adjustments must be agreed by the formulating technical centre.

.6 If formulation adjustment is envisaged during the production process, the maximum allowable limits will be approved by the formulating technical centre and clearly stated in the QC working procedures.

.7 The manufacturer’s quality control system will ensure that all current production is the same formulation as that supplied for the *Type Approval Certificate*. Formulation change is not permissible without testing in accordance with the test procedures in the PSPC and the issue of a *Type Approval Certificate* by PRS.

.8 Batch records including all QC test results such as viscosity, specific gravity and airless spray characteristics will be accurately recorded. Details of any additions will also be included.

.9 Whenever possible, raw material supply and lot details for each coating batch will be traceable. Exceptions may be where bulk supply such as solvents and pre-dissolved solid epoxies are stored in tanks, in which case it may only be possible to record the supplier’s blend.

.10 Dates, batch numbers and quantities supplied to each coating contract will be clearly recorded.

3.3.3 All raw material supply must be accompanied by the supplier’s *Certificate of Conformance*. The certificate will include all requirements listed in the coating manufacturer’s QC system.

3.3.4 In the absence of a raw material supplier’s certificate of conformance, the coating manufacturer must verify conformance to all requirements listed in the coating manufacturer’s QC system.

3.3.5 Drums must be clearly marked with the details as described on the *Type Approval Certificate*.

3.3.6 *Product Technical Data Sheets* must comply with all the PSPC (PSPC-COT) requirements. The QC system will ensure that all *Product Technical Data Sheets* are current.

3.3.7 QC procedures of the originating technical centre will verify that all production units comply with the above stipulations and that each raw material supply is approved by the technical centre.

3.3.8 In the case that a manufacturer wishes to have products which are manufactured in different locations under the same name, IR identification and SG shall be used to demonstrate that they are the same coating, or individual approval tests will be required for the paint manufactured in each location.
3.3.9 The Type Approval Certificate is invalid if the formulation of either the epoxy-based system or the shop primer is changed. It is the responsibility of the manufacturer to inform class immediately of any changes to the formulation.

Failure to inform class of an alteration to the formulation will lead to cancellation of the certificates for that manufacturer’s products.

4 PROCEDURE FOR ASSESSMENT OF COATING INSPECTORS’ QUALIFICATIONS

4.1 Coating inspectors required to carry out inspections in accordance with the PSPC (PSPC-COT) section 6 shall be certified to NACE Coating Inspector Level 2, FROSIO Inspector Level III, or an equivalent qualification. Equivalent qualifications are described in 4.3 below.

4.2 However, only coating inspectors with at least 2 years relevant coating inspector experience and certified to NACE Coating Inspector Level 2 or FROSIO Inspector Level III, or with an equivalent qualification, can write and/or authorise procedures, or decide upon corrective actions to overcome non-compliances.

4.3 Equivalent Qualification

4.3.1 Equivalent qualification is the successful completion, as determined by course tutor, of an approved course.

4.3.1.1 The course tutors shall be qualified with at least 2 years relevant experience and qualified to NACE Coating Inspector Level 2 or FROSIO Inspector Level III, or with an equivalent qualification.

4.3.1.2 Approved Course: A course that has a syllabus based on the issues associated with the PSPC (PSPC-COT) including the following:

- health environment and safety,
- corrosion,
- materials and design,
- international standards referenced in PSPC (PSPC-COT),
- curing mechanisms,
- role of inspector,
- test instruments,
- inspection procedures,
- coating specification,
- application procedures,
- coating failures,
- pre-job conference,
- MSDS and product data sheet review,
- coating technical file,
- surface preparation,
- dehumidification,
- waterjetting,
- coating types and inspection criteria,
- specialized application equipment,
- use of inspection procedures for destructive testing and non-destructive testing instruments,
- inspection instruments and test methods,
- coating inspection techniques,
- cathodic protection,
- practical exercises, case studies.

Examples of approved courses may be internal courses run by the coating manufacturers or shipyards etc.
4.3.1.3 Such a course shall have an acceptable measurement of performance, such as an examination with both theoretical and practical elements. The course and examination shall be approved by PRS.

4.3.2 Equivalent qualification arising from practical experience: An individual may be qualified without attending a course where it can be shown that the individual:
– has a minimum of 5-years practical work experience as a coating inspector of ballast tanks during new construction within the last 10 years, and
– has successfully completed the examination given in 4.3.1.3.

4.4 Assistant of Coating Inspectors

4.4.1 If the coating inspector requires assistance from other persons to perform part of the inspections, those persons shall perform the inspections under the coating inspector’s supervision and shall be trained to the coating inspector’s satisfaction.

4.4.2 Such training should be recorded and endorsed either by the inspector, the yard's training organisation or inspection equipment manufacturer to confirm competence in using the measuring equipment and confirm knowledge of the measurements required by the PSPC (PSPC-COT).

4.4.3 Training records shall be available for verification.

5 PROCEDURE FOR INSPECTION AGREEMENT

5.1 Inspection of surface preparation and coating processes agreement shall be signed by shipyard, shipowner and coating manufacturer and shall be presented by the shipyard to PRS for review prior to commencement of any coating work on any stage of a new building and as a minimum shall comply with the PSPC (PSPC-COT).

5.2 To facilitate the review, the following from the CTF, shall be available:
.1 Coating specification including selection of areas (spaces) to be coated, selection of coating system, surface preparation and coating process.
.2 Statement of Compliance or Type Approval of the coating system.

5.3 The agreement shall be included in the CTF and shall at least cover:
.1 Inspection process, including scope of inspection, who carries out the inspection, the qualifications of the coating inspector(s) and appointment of a qualified coating inspector (responsible for verifying that the coating is applied in accordance with the PSPC (PSPC-COT)). Where more than one coating inspector will be used, then their areas of responsibility shall be identified. (For example multiple construction sites).
.2 Language to be used for documentation.

5.4 Any deviations in the procedure relative to the PSPC (PSPC-COT) noted during the review shall be raised with the shipyard, which is responsible for identifying and implementing the corrective actions.

5.5 The Certificate of Class shall not be issued until all required corrective actions have been closed out to the satisfaction of PRS.

6 PROCEDURE FOR VERIFICATION OF APPLICATION OF THE PSPC (PSPC-COT)

6.1 The verification requirements of section 7 of the PSPC (PSPC-COT) shall be carried out by PRS.

6.2 Monitoring implementation of the coating inspection requirements, as called for in section 7.5 of the PSPC (PSPC-COT) means checking, on a sampling basis, that the inspectors are using the correct equipment, techniques and reporting methods as described in the inspection procedures reviewed by PRS.
6.3 Any deviations found under 6.2 shall be raised initially with the coating inspector, who is responsible for identifying and implementing the corrective actions.

6.4 In the event that corrective actions are not acceptable to PRS or in the event that corrective actions are not closed out then the shipyard shall be informed.

6.5 The Certificate of Class shall not be issued until all required corrective actions have been closed out to the satisfaction of PRS.

7 PROCEDURE FOR COATING TECHNICAL FILE REVIEW

7.1 The shipyard is responsible for compiling the Coating Technical File (CTF) either in paper or electronic format, or a combination of the two.

7.2 The CTF is to contain all the information required by the PSPC (PSPC-COT) section 3.4 and the inspection of surface preparation and the coating processes agreement.

7.3 The CTF shall be reviewed for content in accordance with the PSPC (PSPC-COT) section 3.4.2.

7.4 Any deviations found under 7.3 shall be raised with the shipyard, which is responsible for identifying and implementing the corrective actions.

7.5 The Certificate of Class shall not be issued until all required corrective actions have been closed out to the satisfaction of PRS.

8 PROCEDURE FOR REVIEW OF QUALITY CONTROL OF AUTOMATED SHOP PRIMER PLANTS

8.1 It is recognised that the inspection requirements of section 6.2 of the PSPC (PSPC-COT) may be difficult to apply to an automated shop primer plant and a Quality Control approach would be a more practical way of enabling compliance with the requirements of PSPC (PSPC-COT).

8.2 As required in PSPC (PSPC-COT), it is the responsibility of the coating inspector to confirm that the quality control procedures are ensuring compliance with PSPC (PSPC-COT).

8.3 When reviewing the Quality Control for automated shop primer plants, the following procedures should be included:
 .1 Procedures for management of the blasting grit including measurement of salt and contamination.
 .2 Procedures recording the following: steel surface temperature, relative humidity, dewpoint.
 .3 Procedures for controlling or monitoring surface cleanliness, surface profile, oil, grease, dust and other contamination.
 .4 Procedures for recording/measuring soluble salts.
 .5 Procedures for verifying that thickness and curing of the shop primer conforms to the values specified in the Technical Specification.

9 PROCEDURE FOR REVIEW OF COATING TECHNICAL SPECIFICATIONS

9.1 The Coating Technical Specifications should be provided by the shipyard in accordance with the requirements of PSPC (PSPC-COT) detailing all the requirements of Table 1 of the PSPC (PSPC-COT).

9.2 The Coating Technical Specifications should contain the type of coating system, steel preparation, surface preparation, surface cleanliness, environmental conditions, application procedure, acceptance criteria and inspection.
10 CATHODIC PROTECTION ON OIL TANKERS

10.1 Impressed current systems are not permitted in oil cargo tanks.

10.2 Magnesium or magnesium alloy anodes are not permitted in oil cargo tanks and tanks adjacent to cargo tanks.

10.3 Aluminium anodes are only permitted in cargo tanks and tanks adjacent to cargo tanks in locations where the potential energy does not exceed 270 J. The height of the anode shall be measured from the bottom of the tank to the centre of the anode, and its weight shall be taken as the weight of the anode as fitted, including the fitting devices and inserts. However, where aluminium anodes are located on horizontal surfaces such as bulkhead girders and stringers not less than 1 m wide and fitted with an upstanding flange or face flat projecting not less than 75 mm above the horizontal surface, the height of the anode may be measured from this surface. Aluminium anodes shall not be located under tank hatches or openings for tank cleaning, the so-called Butterworth openings (in order to avoid any metal parts falling on the fitted anodes), unless protected by adjacent structure.

10.4 There is no restriction on the positioning of zinc anodes.

10.5 The anodes shall have steel cores and these shall be sufficiently rigid to avoid resonance in the anode support and be so designed that they retain the anode even when it is wasted.

10.6 The steel inserts shall be attached to the structure by means of a continuous weld of adequate section. Alternatively they may be attached to the separate supports by bolting, provided a minimum of two bolts with locknuts are used.

Other approved mechanical means of clamping may be accepted by PRS.

10.7 The supports at each end of an anode shall be not attached to separate items which are likely to move independently.

10.8 When anode inserts or supports are welded to the structure, they shall be so arranged that the welds are clear of stress raisers.
1 Scope
This Annex provides details of the test procedures for cargo tank coatings for crude oil carriers as referred to in paragraphs 2.5 and 2.9.3 of this Publication. Both the tank-top and deck-head shall be applied with coating systems that have passed the full test protocol as described below.

2 Definitions
Coating specification shall be defined as the specification of coating systems which include the type of coating system, steel preparation, surface preparation, surface cleanliness, environmental conditions, application procedure, inspection and acceptance criteria.

3 Background
It is acknowledged that crude oil cargo tank on board a ship is exposed to two very different environmental conditions.

3.1 When the cargo tank is loaded there are three distinct vertical zones:
.1 Lowest part, and horizontal parts on stringer decks, etc., exposed to water that can be acidic and sludge that can contain anaerobic bacteria.
.2 Mid part where the oil cargo is in contact with all immersed steel.
.3 Vapour space where the air is saturated with various vapours from the loaded cargo tank such as H₂S, CO₂, SO₂, water vapour and other gases and compounds from the inert gas system.

3.2 When the tank is in a ballast condition:
.1 Lowest part and horizontal parts on stringer decks, etc., exposed to cargo residues and water that can be acidic and sludge that can contain anaerobic bacteria.
.2 Tank space where the air contains various vapours from the crude oil residues such as H₂S, CO₂, SO₂, water vapour and other gases and compounds from the inert gas system.

4 Testing
The tests herein are designed to simulate, as far as practicable, the two main environmental conditions to which the crude oil cargo tank coating will be exposed. The coating shall be validated by the following tests: Gas-tight Cabinet Test (see Appendix 1), simulating the vapor phase of the loaded tank, Immersion test (see Appendix 2) simulating the loaded condition of the crude oil tank\(^1\).

5 Test Gas Composition
The test gas is based on the composition of the vapour phase in crude oil tanks, except that the hydrocarbon components are not included as these have no detrimental effect on epoxy coatings such as those used in cargo oil tanks.

5.1 The test gas composition is as follows:
- N₂ 83 ± 2 per cent by volume of dry gas
- CO₂ 13 ± 2 per cent by volume of dry gas
- O₂ 4 ± 1 per cent by volume of dry gas
- O₂ 300 ± 20 ppm
- H₂S 200 ± 20 ppm

6 Test Liquid
Crude oil is a complex chemical material which is not stable over time when stocked. Crude oils can also vary in composition over time. In addition the use of crude oil has proven to create practical and

\(^1\) Related test method is derived from, but not identical to, standard ISO 2812-1:2007 - Paints and varnishes - Determination of resistance to liquids - Part 1: Immersion in liquids other than water.
HSE barriers for the involved testing institutes. To overcome this, a model immersion liquid is used to simulate crude oil. The formulation of this crude oil model system is given below:

.1 start with distillate Marine Fuel, DMA Grade1 density at 15°C: maximum 890 kg/m3, viscosity of maximum 6 mm2/s at 40°C;
.2 add naphthenic acid up to an acid number2 of 2.5 ± 0.1 mg KOH/g;
.3 add benzene/ toluene (1:1 ratio) up to a total of 8.0 ± 0.2% w/w of the DMA;
.4 add artificial seawater3 up to a total of 5.0 ± 0.2% w/w to the mixture;
.5 add H\textsubscript{2}S dissolved in a liquid carrier (in order to get 5 ± 1 ppm w/w H\textsubscript{2}S in the total test liquid);
.6 thoroughly mix the above constituents immediately prior to use; and
.7 once the mixture is completed, it shall be tested to confirm the mixture complies with the test mixture concentrations.

To prevent the risk of H\textsubscript{2}S release into the test facility, it is recommended the a stock solution be used for steps 1 to 4, and then the test containers be filled and the test solution be completed following steps 5 and 6.

1 ISO 8217:2005 - Petroleum products - Fuels (class F) - Specifications of marine fuels.
2 ISO 6618:1997 - Petroleum products and lubricants - Determination of acid or base number - Colour-indicator titration method.
3 ASTM D1141 - 98(2008) - Standard Practice for the Preparation of Substitute Ocean Water.
Appendix 1
Gas-tight Cabinet Test

1 Test condition
The vapour test shall be performed in a gas-tight cabinet. The dimensions and design of the air tight
gas cabinet are not critical, provided the requirements of subparagraphs .6 to .10 below are met.
The test gas is designed to simulate the actual crude oil cargo tank environment in ballast condition
as well as the vapour conditions of the loaded tank.
.1 The exposure time is 90 days.
.2 Testing shall be performed using duplicate panels; a third panel shall be prepared and stored
at ambient conditions to act as a reference panel during final evaluation of the test panels.
.3 The size of each test panel is 150 mm × 100 mm × 3 mm.
.4 The panels shall be treated and the coating system applied in accordance with Table 2.5.1.
.5 The zinc silicate shop primer, when used, shall be weathered for at least 2 months and cleaned
by low pressure fresh water washing. The exact method of shop primer preparation before being
over coated shall be reported, and the judgment issued for that specific system. The reverse side
and edges of the test piece shall be coated appropriately, in order not to influence the test results.
.6 Inside the gas-tight cabinet a trough shall be present. This trough shall be filled with 2 ± 0.2 l
of water. The water in the trough shall be drained and renewed prior to each time the test gas is re-
freshed.
.7 The vapour spaces inside the gas-tight cabinet shall be filled with a mixture of test gas.
The cabinet atmosphere shall be maintained over the period of the test. When the gas is outside
the scope of the test method, it shall be refreshed. The monitoring frequency and method,
and the date and time for refreshing the test gas, shall be in the test report.
.8 The atmosphere in the test cabinet shall at all times be 95 ± 5% relative humidity.
.9 Temperature of the test atmosphere shall be 60 ± 3°C.
.10 A stand for the test panels shall be made of a suitable inert material to hold the panels vertically
spaced at least 20 mm between panels. The stand shall be positioned in the cabinet to ensure
the lower edge of the panels is at least 200 mm above the height of the water and at least 100 mm
from the walls of the cabinet. If two shelves are in the cabinet, care shall be taken to ensure solu-
tion does not drip on to the lower panels.

2 Test results
2.1 Prior to testing the following measured data of each coating composing the coating system, includ-
ing the zinc silicate shop primer when used under the coating system, shall be reported:
.1 infrared (IR) identification of the base and hardener components of the coating;
.2 specific gravity of the base and hardener components of the pai nt (in acc. with ISO 2811-1/4
Paints and varnishes. Determination of density);
.3 mean dry film thickness (DFT) (by using a template).¹

2.2 After completion of the test duration, the panels shall be removed from the cabinet and rinsed with
warm tap water. The panels shall be dried by blotting with absorbent paper and, then, evaluated
for rust and blistering within 24 h of the end of the test.

2.3 After testing, blisters and rust shall be reported, accordingly with:
.1 ISO 4628-1:2003 Paints and varnishes Evaluation of degradation of coatings Designation
of quantity and size of defects, and of intensity of uniform changes in appearance Part 1: General
introduction and designation system;
of quantity and size of defects, and of intensity of uniform changes in appearance – Part 2: As-
sessment of degree of blistering;
of quantity and size of common types of defect – Part 3: Designation of degree of rusting.

¹ Six equally distributed measuring points are used on panels size 150 mm x 100 mm.
3 Acceptance criteria

3.1 The test results based on section 2 above shall satisfy the following criteria, the poorest performing of the duplicate test panels shall be used in the report:

<table>
<thead>
<tr>
<th>Item</th>
<th>Acceptance criteria for epoxy-based systems</th>
<th>Acceptance criteria for alternative systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blisters on panel</td>
<td>No blisters</td>
<td>No blisters</td>
</tr>
<tr>
<td>Rust on panel</td>
<td>Ri 0 (0%)</td>
<td>Ri 0 (0%)</td>
</tr>
</tbody>
</table>

3.2 When evaluating test panels, blistering or rust within 5 mm of the panel edge shall be ignored.

4 Test report

The test report shall include the information on:

1. coating manufacturers’ name and manufacturing site;
2. dates of test;
3. product name/identification of each coat and, where applicable, zinc silicate, shop primer;
4. batch numbers of each component of each product;
5. details of surface preparation of steel panels, before shop primer, application, and treatment of the shop primer before over coating where relevant and at a minimum including the following:
 - surface treatment, or treatment of weathered shop primer, and any other important information on treatment influencing the performance;
 - water soluble salt level measured on the steel prior to application of the shop primer.
6. details of coating system, including the following:
 - zinc silicate shop primer if relevant, its secondary surface pre-treatment and condition under which applied, weathering period;
 - number of coats, including the shop primer, and thickness of each;
 - mean dry film thickness (DFT) prior to testing;
 - thinner if used;
 - humidity;
 - air temperature;
 - steel temperature;
 - details of schedule for refreshing the test gas;
7. test results according to the paragraph 5.2 above;
8. results according to the paragraph 5.3 above.

1 It should be noted that the test is valid irrespective of production site, meaning that no individual testing of product from different production sites is required.
2 Refer to the following standards:
 1. ISO 8502-6:2006. Preparation of steel substrates before application of paints and related products Tests for the assessment of surface cleanliness Part 6: Extraction of soluble contaminants for analysis The Bresle method; and
Appendix 2
Immersion Test

1 Test condition

1.1 The immersion test is developed to simulate the conditions in a crude oil tank in loaded condition.
 .1 The exposure time is 180 days.
 .2 The test liquid shall be made as per item 6 in the Standard – ISO 2812-1.
 .3 The test liquid shall be added to a container with an inside flat bottom until a column of the test
 liquid of height of 400 mm is reached, resulting in an aqueous phase of 20 mm.

Any other alternative test set-up, using an identical test liquid, which will also result in the immersion
of the test panel in 20 mm of the aqueous phase, is also accepted. This can be achieved by using, for in-
stance, inert marbles.

 .4 The temperature of the test liquid shall be 60 ± 2°C and shall be uniform and maintained con-
 stant with recognized methods such as water or oil bath or air circulation oven capable of keeping the
 immersion liquid within the required temperature range.
 .5 Test panels shall be positioned vertically and fully immersed during the test.
 .6 Testing shall be performed using duplicate panels.
 .7 Inert spacers which do not cover the test area shall be used to separate test panels.
 .8 The size of each test panel is 150 mm x 100 mm x 3 mm.
 .9 The panels shall be treated according to the PSPC (Table 1, item 1.2) and the coating system
 applied according to Table 1, items: 1.4 and 1.5.
 .10 The zinc silicate shop primer, when used, shall be weathered for at least 2 months and cleaned
 by low pressure fresh water washing. The exact method of shop primer preparation before being over
 coated shall be reported, and the judgment issued for that specific system. The reverse side, and edg-
 es, of the test piece shall be coated appropriately, in order not to influence the test results.
 .11 After the full immersion test period is completed the panels shall be removed from the test liq-
 uid and wiped with dry clean cloth before evaluation of the panels.
 .12 Evaluation of the test panels shall be done within 24 h after completion of the test.

2 Test results

2.1 Prior to testing, the following measured data of each coating composing the coating system, in-
cluding the zinc silicate shop primer when used under the coating system, shall be reported:
 – infrared (IR) identification of the base and hardener components of the coating;
 – specific gravity of the base and hardener components of the paint ; and
 – mean dry film thickness (DFT) (by using a template panel size 150 mm x 100 mm).

2.2 After testing, the following measured data shall be reported: blisters and rust.

3 Acceptance criteria

3.1 The test results based on the section 2 shall satisfy the following criteria, the poorest performing of
the duplicate test panels shall be used in the report:

<table>
<thead>
<tr>
<th>Item</th>
<th>Acceptance criteria for epoxy-based systems</th>
<th>Acceptance criteria for alternative systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blisters on panel</td>
<td>No blisters</td>
<td>No blisters</td>
</tr>
<tr>
<td>Rust on panel</td>
<td>Ri 0 (0%)</td>
<td>Ri 0 (0%)</td>
</tr>
</tbody>
</table>

3.2 When evaluating test panels, blistering or rusting within 5 mm of the panel edge shall be ignored.

4 Test report

4.1 The test report shall include the following information:
 .1 coating manufacturers' name and manufacturing site;
 .2 dates of test;
3. product name/identification of each coat and, where applicable, zinc silicate shop primer;
4. batch numbers of each component of each product;
5. details of surface preparation of steel panels, before shop primer application, and treatment of the shop primer before over coating where relevant and at a minimum including the following:
 a. surface treatment, or treatment of weathered shop primer, and any other important information on treatment influencing the performance; and
 b. water soluble salt level measured on the steel prior to application of the shop primer
6. details of coating system, including the following:
 a. zinc silicate shop primer if relevant, its secondary surface pre-treatment and condition under which applied, weathering period;
 b. number of coats, including the shop primer, and thickness of each;
 c. mean dry film thickness (DFT) prior to testing;
 d. thinner if used;
 e. humidity ;
 f. air temperature;
 g. steel temperature;
7. test results according to the paragraph 6.2 above; and
8. results according to the paragraph 6.3 above.
Appendix 3
Precautions Regarding The Use Of Dangerous Materials

1 Potentially hazardous materials
1.1 The test methods involve the use of materials that may be hazardous to health as follows:
 .1 Sulphur Dioxide: Corrosive when wet, toxic if inhaled, causes burns, and is an irritant to
eyes and respiratory system.
 .2 Hydrogen Sulphide: Highly flammable (Flash point of -82°C), can form an explosive mix-
ture with air, corrosive when wet, causes burns, has to be kept away from sources of igni-
tion, irritant and asphyxiant, LTEL 5 ppm, STEL 10 ppm, higher concentrations can be fa-
tal and have no odour. Repeated exposure to low concentrations can result in the sense of
smell for the gas being diminished.
 .3 Benzene: Highly flammable (Flash point of -11°C), can form an explosive mixture with
air, toxic, carcinogenic, acute health risk.
 .4 Toluene: Highly flammable (Flash point of 4°C), can form an explosive mixture with air,
irritant, acute health risk, reprotoxin.
1.2 Special test apparatus and precautions may be required depending on the regulations in
force in the country where the tests are performed.
1.3 Although some countries have no specific requirements preventing either of the test being
carried out, it shall anyhow be required that
 .1 a risk assessment of the working conditions is carried out;
 .2 during the test period, the system shall be enclosed
 .3 the environment shall be controlled particularly at the start and end of the tests, suitable air
 exhaust shall be available and personal protective equipment shall be worn.
Annex 2

Example of Daily Log and Non-conformity Report

<table>
<thead>
<tr>
<th>Ship:</th>
<th>Tank/Hold No:</th>
<th>Database:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SURFACE PREPARATION

<table>
<thead>
<tr>
<th>Method:</th>
<th>Area (m²):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abrasive:</th>
<th>Grain size:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Surface temperature:</th>
<th>Air temperature:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative humidity (max):</th>
<th>Dew point:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard achieved:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rounding of edges:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Job No.:</th>
<th>Date:</th>
<th>Signature:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COATING APPLICATION:

<table>
<thead>
<tr>
<th>Coat No.</th>
<th>System</th>
<th>Batch No.</th>
<th>Date</th>
<th>Air temp.</th>
<th>Surf temp.</th>
<th>RH%</th>
<th>Dew point</th>
<th>DFT Specified</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measured minimum and maximum DFT. DFT readings to be attached to daily log.

<table>
<thead>
<tr>
<th>Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Job No.:</th>
<th>Date:</th>
<th>Signature:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ship:</td>
<td>Tank/Hold No:</td>
<td>Database:</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Part of structure:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DESCRIPTION OF THE INSPECTION FINDINGS TO BE CORRECTED

Description of findings:

Reference document (daily log):

Action taken:

<table>
<thead>
<tr>
<th>Job No.:</th>
<th>Date:</th>
<th>Signature:</th>
</tr>
</thead>
</table>
Annex 3

Dry Film Thickness (DFT) Measurements

1 The following verification check points of DFT are to be taken:
 .1 one gauge reading per 5 m² of flat surface areas;
 .2 one gauge reading at 2 to 3 m intervals and as close as possible to tank boundaries, but not further than 15 mm from edges of tank boundaries;
 .3 longitudinal and transverse stiffener members;
 One set of gauge readings as shown below, taken at 2 to 3 m run and not less than two sets between primary support members:

 ![Diagram of Primary Support Members and Longitudinal and Transverse Stiffeners]

 Note: Arrows of diagram indicate critical areas and should be understood to mean indication for both sides.
 .4 gauge readings for each set of primary support members and 2 gauge readings for each set of other members as indicated by the arrows in the diagram;
 .5 for primary support members (girders and transverses), one set of gauge readings for 2 to 3 m run as shown in figure above but not less than three sets;
 .6 around openings one gauge reading from each side of the opening;
 .7 five gauge readings per square metre (m²) but not less than three gauge readings taken at complex areas (i.e. large brackets of primary support members): and
 .8 additional spot checks are to be taken to verify coating thickness for any area considered necessary by the coating inspector.